

Coupled Nonlinear Aeroelasticity and Flight Dynamics of Highly Flexible Aircraft

Weihua Su

Assistant Professor

Department of Aerospace Engineering and Mechanics

The University of Alabama

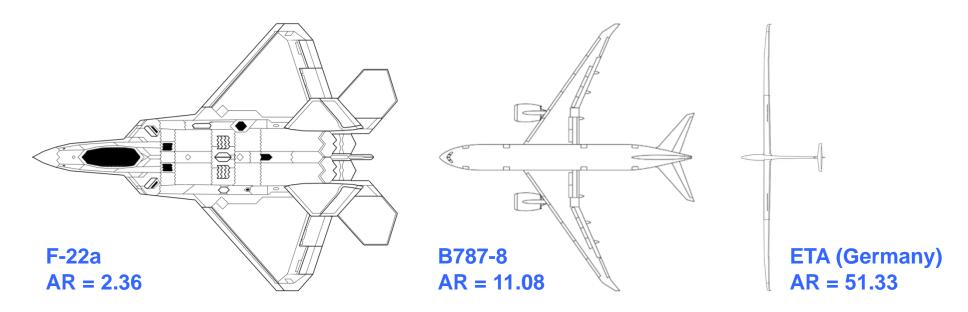
Tuscaloosa, AL

Applied Modeling & Simulation Seminar Series
NASA Ames Research Center
Moffett Field, CA
Aug. 27, 2014

Overview

- Introduction
 - Background
 - Motivation
- Theoretical formulation
 - Geometrically nonlinear beam
 - Unsteady aerodynamics
 - Flight dynamic modeling
- Numerical studies
- Concluding remarks
- Ongoing and future developments

Aerodynamic Efficiency and Wing Aspect-Ratio



Large wing aspect-ratio to achieve high aerodynamic efficiency

$$R \text{ or } E \propto \left(\frac{L}{D}\right) \ln \left(\frac{W_{_{0}}}{W_{_{1}}}\right)$$

High aerodynamic efficiency

What about Structural Design?

- U.S. Air Force Sensorcraft studies
 - High-altitude, long-endurance
 - Unmanned vehicles
 - Sensor platform
 - Very high fuel fractions (up to 60%)

$$R \text{ or } E \propto \left(\frac{L}{D}\right) \ln \left(\frac{W_{_{0}}}{W_{_{1}}}\right)$$

- Very light structures
 - Not necessarily carry fuel, but...

Low structural weight fraction

High-aspectratio wings

Highly flexible aircraft

What's Challenging?

- Large wing deformation
 - Linear solution might not be sufficient
 - Nonlinear solution needed
- Coupling between wing oscillation and rigid-body motion

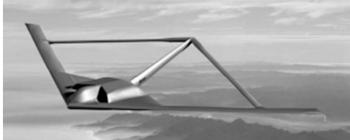
- Body freedom flutter
- Other effects
 - Low Reynolds flights
 - Local transonic effects

Helios Solar Powered Aircraft

Experiencing turbulence after taking off on first solar powered flight

July 14, 2001

Dryden Flight Research Center

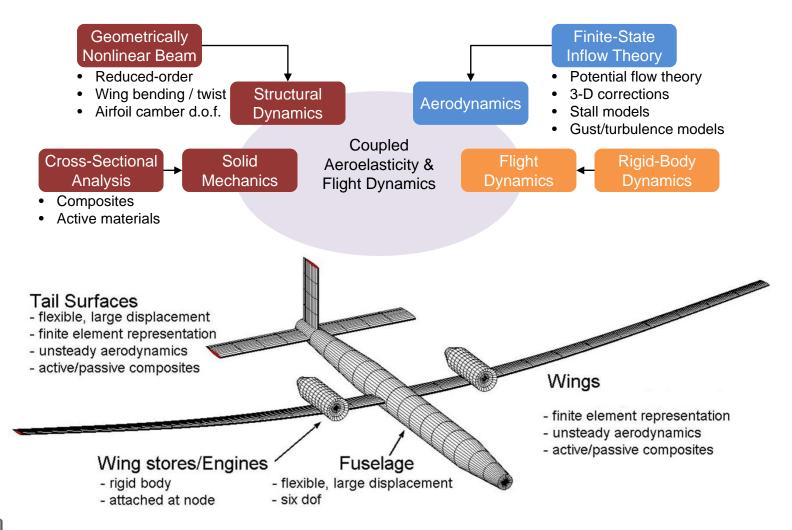


Need an integral solution for nonlinear aeroelasticity + flight dynamics

Objectives

- Create a low-order aeroelastic and flight dynamic framework
 - Effectively represent dynamic behavior of highly flexible vehicle
 - Efficient solution
 - Facilitate active aeroelastic tailoring and control studies
- Explore structural, aerodynamic, and control techniques to enhance flight efficiency and performance
 - Reduce drag
 - Reduce power consumption
 - Suppress instability
 - Reject air disturbance

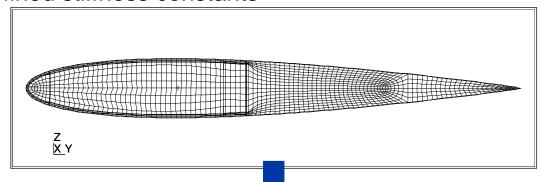
Coupled Nonlinear Aeroelasticity and Flight Dynamics



A simplified aeroelastic/flight dynamics simulation system

Reduced-Order Structural Modeling

- From 3D elastic problem to <u>2D beam cross-sectional analysis</u> and <u>1D beam model</u>
- Dimensional reduction using the Variational-Asymptotic Method:
 - Active thin-walled solution (mid-line discretization)
 - VABS (finite-element discretization)
 - User defined stiffness constants



Cross-Section Stiffness and Inertial Properties

$$\begin{bmatrix} F_{x} \\ M_{x} \\ M_{y} \\ M_{z} \end{bmatrix} = \begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{14} \\ K_{21} & K_{22} & K_{23} & K_{24} \\ K_{31} & K_{32} & K_{33} & K_{34} \\ K_{41} & K_{42} & K_{43} & K_{44} \end{bmatrix} \begin{bmatrix} \mathcal{E}_{x} \\ K_{x} \\ K_{y} \\ K_{z} \end{bmatrix}$$

Basic Coordinate Systems

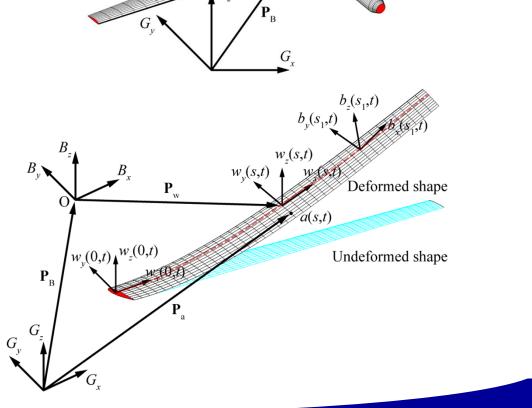
- Global frame (G)
- Body frame (B) origin not necessary to be C.G. of vehicle
- Body frame motion variables

$$b = \begin{cases} p_B \\ \theta_B \end{cases}$$

$$\dot{b} = \beta = \begin{cases} \dot{p}_{\scriptscriptstyle B} \\ \dot{\theta}_{\scriptscriptstyle B} \end{cases} = \begin{cases} v_{\scriptscriptstyle B} \\ \omega_{\scriptscriptstyle B} \end{cases}$$

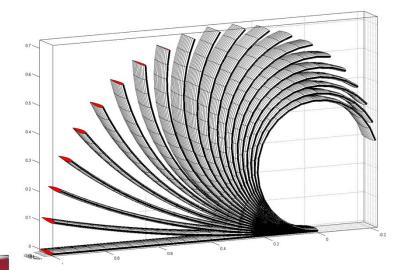
$$\ddot{b} = \dot{\beta} = \left\{ \begin{array}{c} \ddot{p}_B \\ \ddot{\theta}_B \end{array} \right\} = \left\{ \begin{array}{c} \dot{v}_B \\ \dot{\omega}_B \end{array} \right\}$$

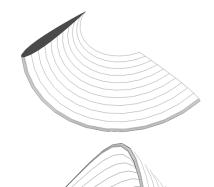
- Local beam frame (w)
- Auxiliary local frame (b)



Strained-Based Geometrically Nonlinear Beam Formulation

- Geometrically nonlinear beam formulation^[1]
- Four local strain degrees-of-freedom (ε): extension, twist, flatwise bending, and chordwise bending
- Constant-strain elements
- Capture large complex deformations with fewer elements computationally efficient
- Isotropic and anisotropic constitutive relations



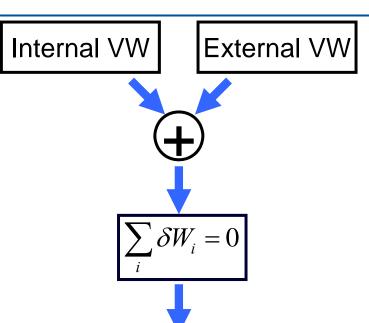


Sample element deformations with constant strain

Strains (ε) and body velocities (β) are independent variables

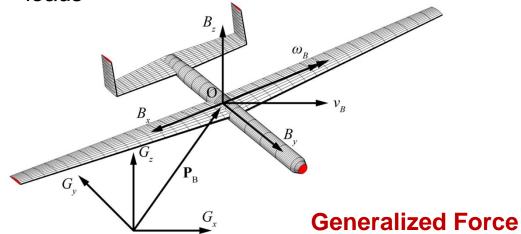
[1] Su, W., and Cesnik, C.E.S., "Strain-Based Geometrically Nonlinear Beam Formulation for Modeling Very Flexible Aircraft," *International Journal of Solids and Structures*, Vol. 48, No. 16-17, 2011, pp. 2349-2360. (doi: 10.1016/j.ijsolstr.2011.04.012)

Formulation Based on Principle of Virtual Work



Equations of Motion

- Inertia force, internal strain, and strain rate
- Gravity loads, distributed loads, and point loads



$$\begin{bmatrix} M_{FF}(\varepsilon) & M_{FB}(\varepsilon) \\ M_{BF}(\varepsilon) & M_{BB}(\varepsilon) \end{bmatrix} \begin{bmatrix} \ddot{\varepsilon} \\ \dot{\beta} \end{bmatrix} + \begin{bmatrix} C_{FF}(\varepsilon, \dot{\varepsilon}, \beta) & C_{FB}(\varepsilon, \dot{\varepsilon}, \beta) \\ C_{BF}(\varepsilon, \dot{\varepsilon}, \beta) & C_{BB}(\varepsilon, \dot{\varepsilon}, \beta) \end{bmatrix} \begin{bmatrix} \dot{\varepsilon} \\ \beta \end{bmatrix} + \begin{bmatrix} K_{FF} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \varepsilon \\ b \end{bmatrix} = \begin{bmatrix} R_F \\ R_B \end{bmatrix}$$

Generalized Mass

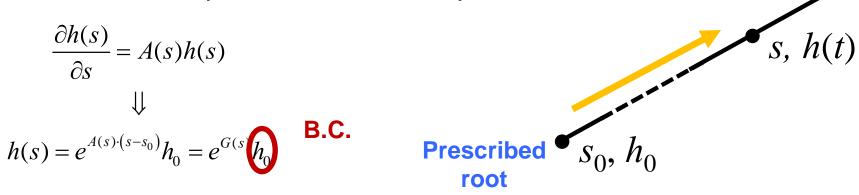
Generalized Damping

Generalized Stiffness

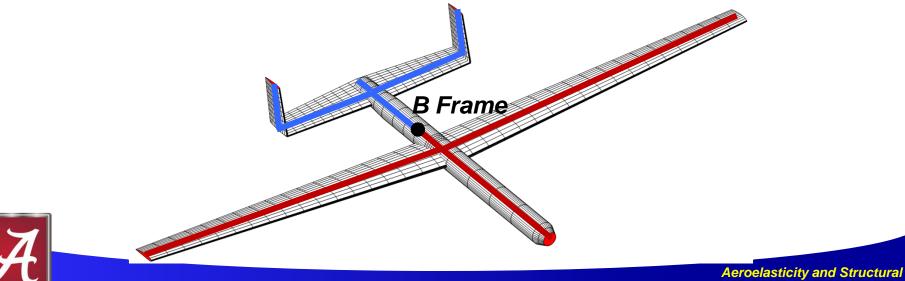
$$\begin{Bmatrix} R_F \\ R_B \end{Bmatrix} = \begin{Bmatrix} K_{FF} \varepsilon^0 \\ 0 \end{Bmatrix} - \begin{bmatrix} J_{h\varepsilon}^T \\ J_{hb}^T \end{bmatrix} Ng + \begin{bmatrix} J_{p\varepsilon}^T \\ J_{pb}^T \end{bmatrix} B^F F^{dist} + \begin{bmatrix} J_{\theta\varepsilon}^T \\ J_{\theta b}^T \end{bmatrix} B^M M^{dist} + \begin{bmatrix} J_{p\varepsilon}^T \\ J_{pb}^T \end{bmatrix} F^{pt} + \begin{bmatrix} J_{\theta\varepsilon}^T \\ J_{\theta b}^T \end{bmatrix} M^{pt}$$

Recovery of Nodal Displacement

Solution of displacement-strain equation:



Marching kinematics in complete aircraft



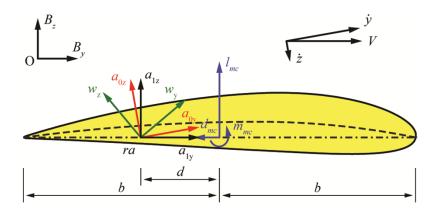
Unsteady Aerodynamics

• 2-D Theodorsen-like unsteady aerodynamics (Peters et al., 94, 95)

$$\begin{split} l_{mc} &= \pi \rho_{\infty} b^2 \left(-\ddot{z} + \dot{y} \dot{\alpha} - d \ddot{\alpha} \right) + 2\pi \rho_{\infty} b \dot{y}^2 \Bigg[-\frac{\dot{z}}{\dot{y}} + \left(\frac{1}{2} b - d \right) \frac{\dot{\alpha}}{\dot{y}} - \bigodot{\dot{y}} \Bigg] + 2\pi \rho_{\infty} b c_1 \dot{y}^2 \delta \\ m_{mc} &= \pi \rho_{\infty} b^2 \left(-\frac{1}{8} b^2 \ddot{\alpha} - \dot{y} \dot{z} - d \dot{y} \dot{\alpha} - \dot{y} \bigodot{\partial} \right) + 2\pi \rho_{\infty} b^2 c_4 \dot{y}^2 \delta \end{split}$$

• Glauert expansion of inflow velocity as function of inflow states, λ_n

$$\lambda_0 = \frac{1}{2} \sum_{n=1}^{N} b_n \lambda_n$$



• Finite state differential equation is transformed to independent variables ε and β

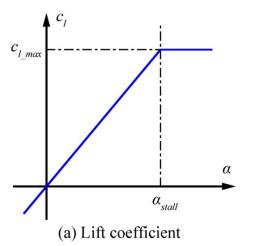
$$\dot{\lambda} = E_1 \lambda + E_2 \ddot{z} + E_3 \ddot{\alpha} + E_4 \dot{\alpha} \implies \left\{ \dot{\lambda} \right\} = F_1 \left\{ \begin{matrix} \ddot{\varepsilon} \\ \dot{\beta} \end{matrix} \right\} + F_2 \left\{ \begin{matrix} \dot{\varepsilon} \\ \beta \end{matrix} \right\} + F_3 \left\{ \lambda \right\}$$

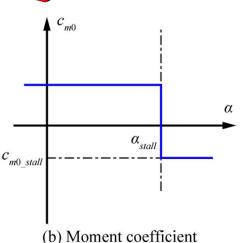
Finite-State Inflow Theory: Modifications

- Aerodynamic coefficient modifications based on XFoil (Reeffects) or CFD calculations
- Compressibility accounted for by Prandtl-Glauert correction

 Spanwise aerodynamic corrections (3-D effects)

Simplified stall model

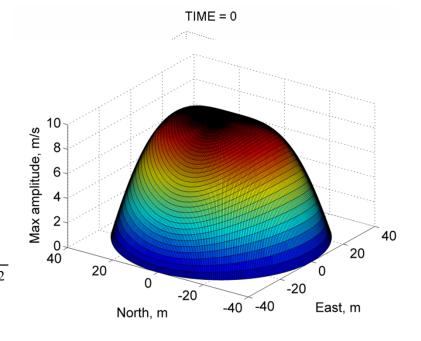




Discrete Non-uniform Gust Model

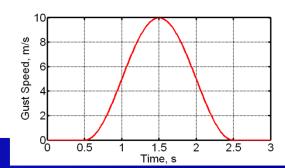
- Fixed region in space
- Amplitude distribution
 - Peak at center and zero at boundary
 - Possibly different distribution in East and North directions
 - Smooth transition

$$A(r, \eta, t) = \frac{1}{2} A_c \left[1 - \cos \left(2\pi \frac{t}{t_g} \right) \right] \sqrt{\left(A_E \cos \eta \right)^2 + \left(A_N \sin \eta \right)^2}$$



$$A_{E}(r) = \sin\left(\frac{\pi}{2}\left[1 - \left(\frac{r}{r_{0}}\right)^{n_{E}}\right]\right) , \quad A_{N}(r) = \sin\left(\frac{\pi}{2}\left[1 - \left(\frac{r}{r_{0}}\right)^{n_{N}}\right]\right) , \quad 0 < r \le r_{0}$$

Time variation: 1-cosine with different temporal durations



Dryden Gust Model

Gust PSD function

$$\Phi_{w}(\omega_{m}) = \frac{\sigma_{w}^{2}L_{w}\left[1 + 3\left(\frac{L_{w}\omega_{m}}{U_{0}}\right)^{2}\right]}{\pi U_{0}\left[1 + \left(\frac{L_{w}\omega_{m}}{U_{0}}\right)^{2}\right]^{2}}$$

$$\Phi_{w}(\omega_{m}) = \frac{2\sigma_{w}^{2}L_{w}\left[1+12\left(\frac{L_{w}\omega_{m}}{U_{0}}\right)^{2}\right]}{\pi U_{0}\left[1+4\left(\frac{L_{w}\omega_{m}}{U_{0}}\right)^{2}\right]^{2}}$$

MIL-HDBK-1797

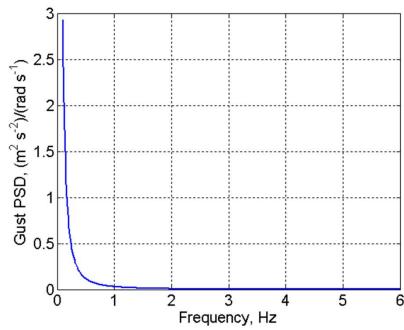
- ω_m : Frequency component (rad/s)
- U_0 : Free stream velocity (m/s)
- L_w : Scale of turbulence (m), determined by altitude (m)
- Superposition of all frequency components with random phase

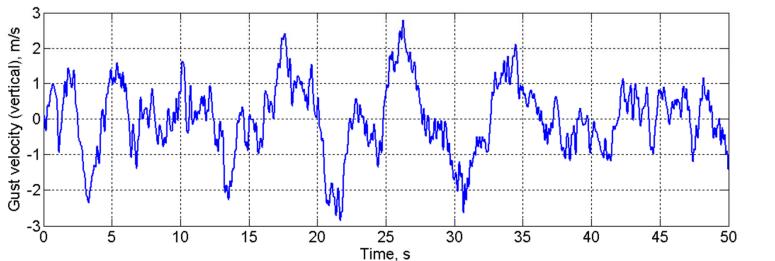
$$w(t) = \sum_{m=1}^{\infty} \sqrt{\Phi_w(\omega_m) \Delta \omega} \cos(\omega_m t + \psi_m)$$

PSD and Time History of Gust Velocity

- Frequency band [0.1~6] Hz
- σ_w adjusted to obtain enough wing deformation
- Uniform spanwise distribution

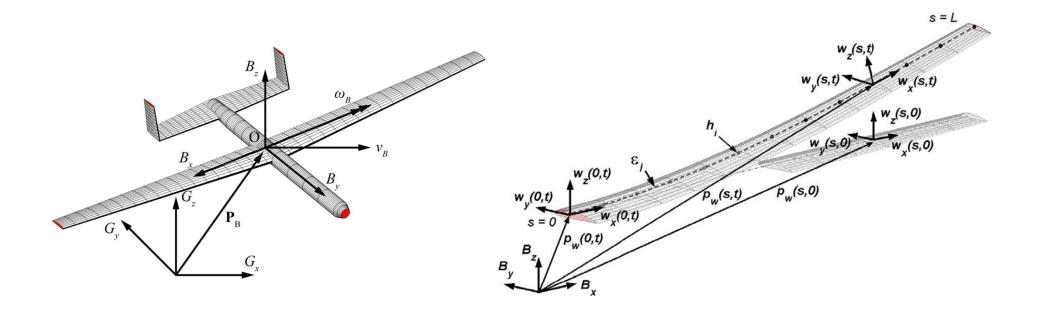
Power concentrated at the low frequency range





Flight Dynamics Modeling

The trajectory and orientation of a fixed body reference frame, *B*, at point *O*, which in general is *not* the aircraft's center of mass



Full Air Vehicle Model for Flight Simulations

Elastic equations of motion

→ Strains (4 by m structural d.o.f.)

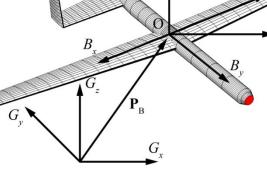
$$M(\varepsilon) \begin{cases} \ddot{\varepsilon} \\ \dot{\beta} \end{cases} + C(\varepsilon, \dot{\varepsilon}, \beta) \begin{cases} \dot{\varepsilon} \\ \beta \end{cases} + K \begin{cases} \varepsilon \\ b \end{cases} = R(\varepsilon, \dot{\varepsilon}, \ddot{\varepsilon}, \zeta, \beta, \dot{\beta}, \lambda)$$
Control inputs
Body velocities (6 flight dynamic d.o.f.)

Finite-state 2-D unsteady aerodynamics

Inflow states (N by m aerodynamic d.o.f.)

$$\dot{\lambda} = F_1 \left\{ \frac{\ddot{\varepsilon}}{\dot{\beta}} \right\} + F_2 \left\{ \frac{\dot{\varepsilon}}{\beta} \right\} + F_2 \lambda$$

$$\dot{\zeta} = -\frac{1}{2}\Omega$$
Frame orientation (4 quaternions)

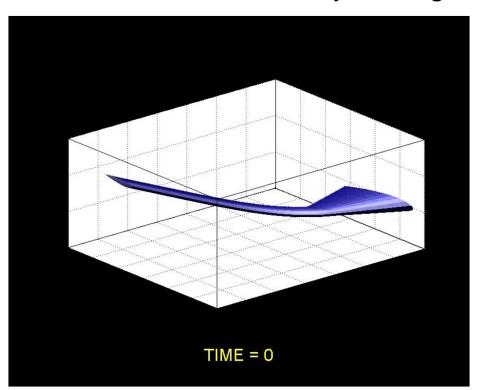


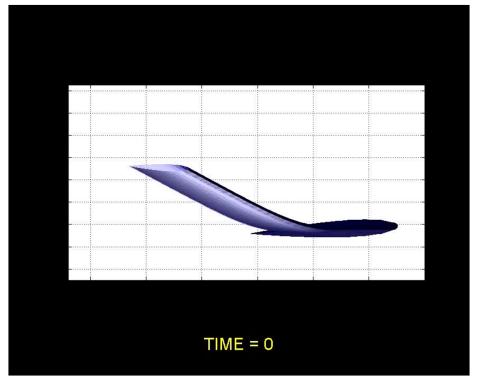
Inertial velocities (6 d.o.f.)

Numerical Studies

Flutter of Constrained Vehicle

- Similar to constrained wind-tunnel model (no body DOFs)
- Fixed root angle of attack (8 deg)
- Free stream velocity 1% higher than flutter speed

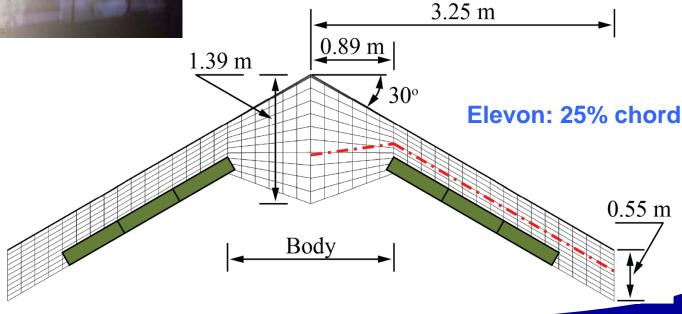




Coupled out-of-plane bending/torsion/in-plane bending mode

Blended-Wing-Body (BWB) Model

Properties inspired from HiLDA (High Lift over Drag Active Wing) wind-tunnel model

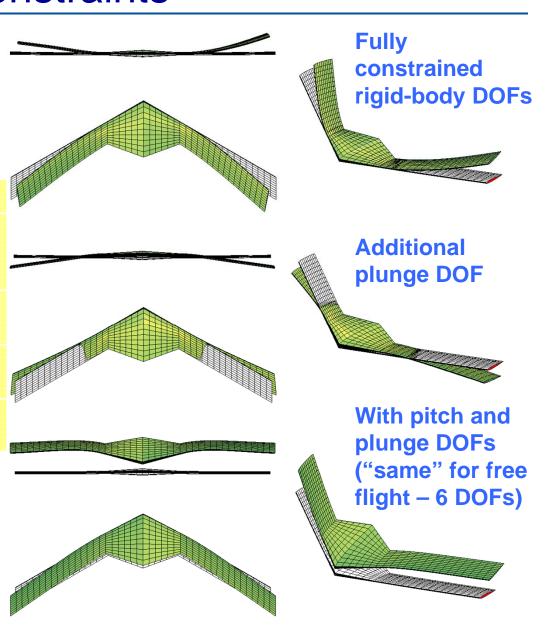


Comparison of Flutter Modes with Rigid-Body Constraints

All cases trimmed for 6,096 m (20,000 ft) altitude, same fuel condition

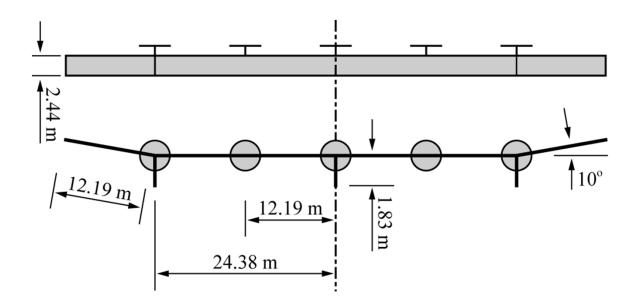
	Flutter Speed	Frequency
Fully constrained dof's	172.52 m/s	7.30 Hz
+ plunging	164.17 m/s	7.07 Hz
+ pitching and plunging	123.17 m/s	3.32 Hz
Free flight	123.20 m/s	3.32 Hz

Traditional wind-tunnel setup
maybe non-conservative – need
rigid-body DOFs in the aeroelastic
analyses, simulations, and tests



Highly Flexible Flying Wing Model

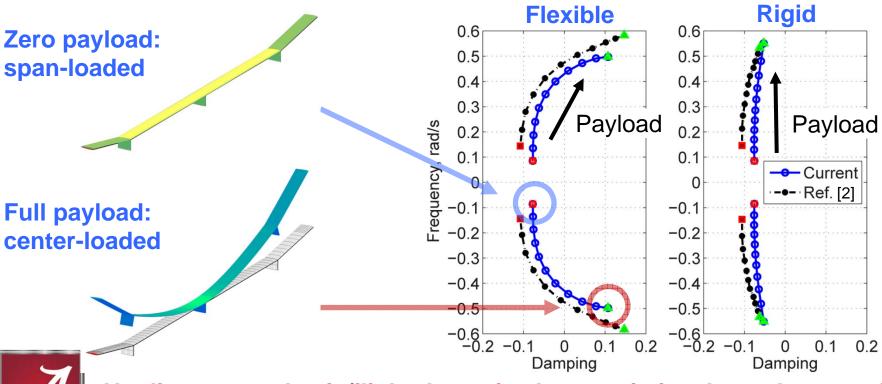
- Representative of Helios prototype^[2]
 - Five engines and three pods
 - Payloads applied at center pod
 - Empty gross mass: 726 kg



[2] Patil, M.J., and Hodges, D.H., "Flight Dynamics of Highly Flexible Flying Wings," *Journal of Aircraft*, Vol. 43, No. 6, 2006, pp. 1790-1798.

Trim Results and Flight Stability

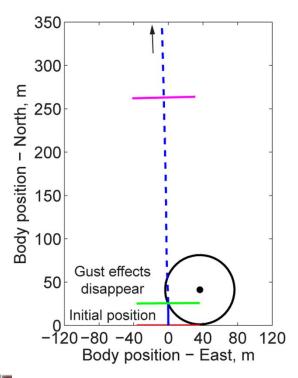
- Speed: 12.2 m/s at sea level; Payload: 0 227 kg (at center pod)
- Linearization about each trimmed condition with increase of payloads
- Root locus for phugoid mode (left: flexible, right: rigid)
- Unstable phugoid mode for payload > 152 kg

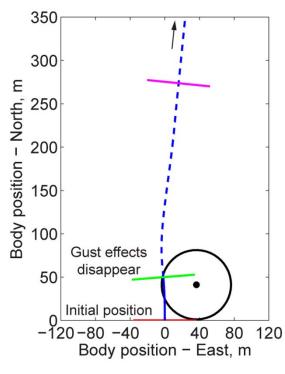


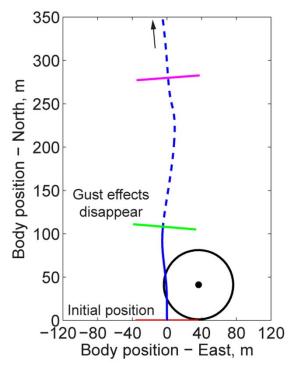
Nonlinear aeroelastic/flight dynamic characteristics dependent on trim conditions

Non-symmetric Gust Input and Response – Fully-Loaded Configuration

- Payload: 227 kg; gust region radius: 40 m; maximum gust center amplitude: 10 m/s
- Non-symmetric discrete gust distribution:
 - gusts mainly applied on right wing







2 s gust duration

4 s gust duration

8 s gust duration

Gust duration impacts after-gust flight path

Instantaneous Vehicle Positions and Orientations

 Positions and orientations at 0, 5, 12, 18, 24, and 30 s, respectively

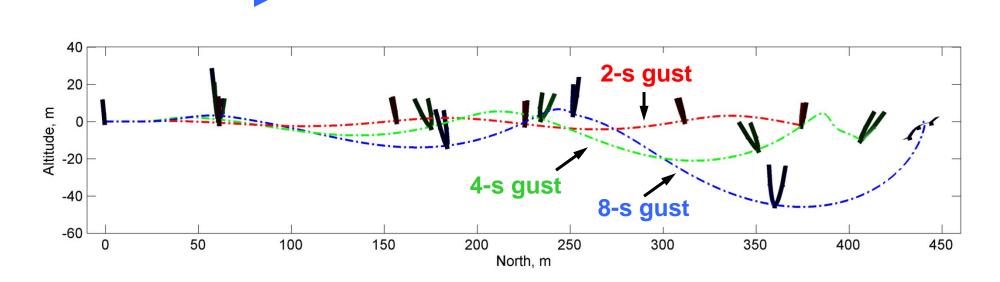
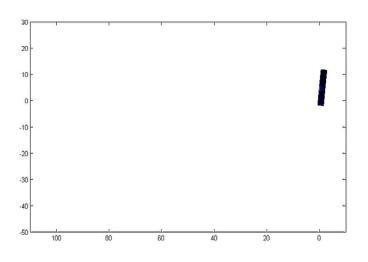
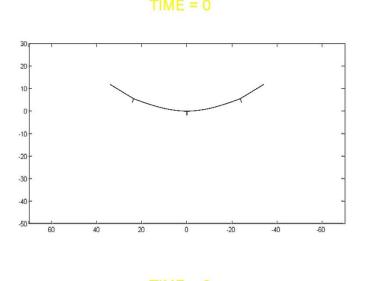


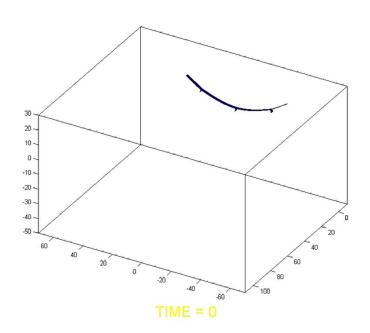
Illustration of unstable Phugoid mode

Animation of Vehicle Motion with Gust Perturbations





2-s gust 4-s gust 8-s gust



Concluding Remarks

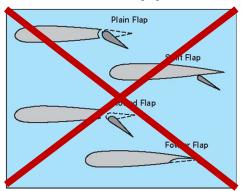
- Framework for modeling and analyzing highly flexible aircraft
 - Coupled nonlinear aeroelastic/flight dynamic simulation
 - Strain-based geometrically-nonlinear beam
 - Incompressible unsteady aerodynamics (with compressibility corrections and stall models)
 - Rigid-body flight dynamics
- Highly flexible aircraft have radically different behavior than conventional aircraft
 - Coupling between aircraft deformation and rigid-body motions changes flutter boundaries
 - Flutter boundary in free flight condition may be different from constrained flight
 - Finite amplitude gust can excite instabilities

Concluding Remarks (Cont'd)

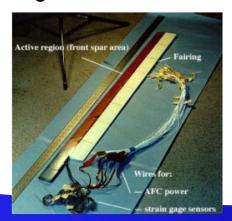
- What did we learn from the physics of highly flexible aircraft?
 - Operating (trim) condition should be the basis in weight, structural, and stability analyses
 - Deformed geometry other than the undeformed shape
 - Traditional linear solution to highly flexible aircraft aeroelasticity might not be sufficient
 - Nonlinear solution is required
 - Coupling between aeroelasticity and flight dynamics needs to be considered
 - Aeroelastic models should incorporate the rigid-body motion, and vice versa
 - Individual solutions might not be appropriate

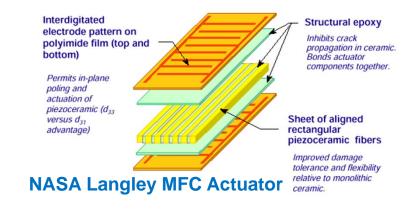
Active Aeroelastic Tailoring and Control

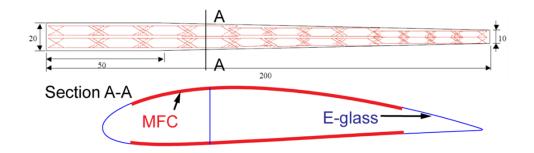
Traditional approach for aerodynamic/flight control



- Drag due to control surfaces
- Conformal wing shape changes
 - Integral strain actuation of bending/twist

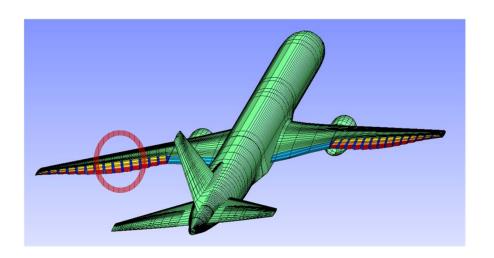


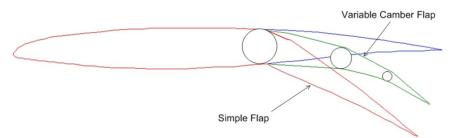




Wing Camber Change

NASA VCCTEF





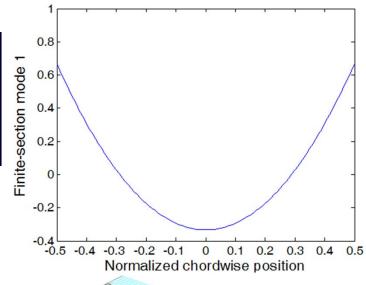
- Jointly proposed by UA/GA Tech/OSU/MSU
 - Full variable camber wing

Recent Development

- Wing cross-sectional warping
 - Plate-like modeling capability with beam model
 - Augmented EoM with camber degrees (finite-section modes)

$$M(\varepsilon) \begin{Bmatrix} \ddot{\varepsilon} \\ (\ddot{q}_n) \\ \dot{\beta} \end{Bmatrix} + C(\varepsilon, \dot{\varepsilon}, \beta) \begin{Bmatrix} \dot{\varepsilon} \\ (\dot{q}_n) \\ \beta \end{Bmatrix} + K \begin{Bmatrix} \varepsilon \\ (q_n) \\ b \end{Bmatrix} = \begin{Bmatrix} R_{\varepsilon} \\ R_{q_n} \\ R_{b} \end{Bmatrix}$$

 Impact on aeroelasticity, flight dynamics, and control -> on-going



Shell

S-Beam, no Warping

S-Beam, warping

Linear Strain Modes

Approximate solutions using strain modes

$$\varepsilon(s,t) = \Phi(s)\eta(t)$$

Modes from elastic EOM

$$\begin{bmatrix} M_{FF} & M_{FB} \\ M_{BF} & M_{BB} \end{bmatrix} \begin{Bmatrix} \ddot{\mathcal{E}} \\ \dot{\beta} \end{Bmatrix} + \begin{bmatrix} K_{FF} & 0 \\ 0 & 0 \end{bmatrix} \begin{Bmatrix} \mathcal{E} \\ b \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$

$$\Phi_{C} = \begin{Bmatrix} \Phi_{F} \\ \Phi_{B} \end{Bmatrix}$$

Only take the elastic components of the modes

$$\Phi(s) = \Phi_F$$

Modal Equations

$$\begin{split} M_{FB}\ddot{\mathcal{E}} + M_{FB}\dot{\beta} + C_{FB}\dot{\mathcal{E}} + C_{FB}\beta + K_{FB}\mathcal{E} &= R_F \\ M_{BB}\ddot{\mathcal{E}} + M_{BB}\dot{\beta} + C_{BB}\dot{\mathcal{E}} + C_{BB}\beta &= R_B \\ \dot{\lambda} &= F_1 \left\{ \begin{matrix} \dot{\mathcal{E}} \\ \dot{\beta} \end{matrix} \right\} + F_2 \left\{ \begin{matrix} \dot{\mathcal{E}} \\ \dot{\beta} \end{matrix} \right\} + F_3\lambda \end{split}$$

$$\begin{split} \overline{M}_{FF}\ddot{\eta} + \overline{M}_{FB}\dot{\beta} + \overline{C}_{FF}\dot{\eta} + \overline{C}_{FB}\beta + \overline{K}_{FF}\eta &= \overline{R}_F(\eta,\dot{\eta},\ddot{\eta},\beta,\dot{\beta}) \\ \overline{M}_{BF}\ddot{\eta} + \overline{M}_{BB}\dot{\beta} + \overline{C}_{BF}\dot{\eta} + \overline{C}_{BB}\beta &= \overline{R}_B(\eta,\dot{\eta},\ddot{\eta},\beta,\dot{\beta}) \\ \dot{\lambda} &= \left[\overline{F}_{1F} \quad F_{1B}\right] \left\{\begin{matrix} \dot{\eta} \\ \dot{\beta} \end{matrix}\right\} + \left[\overline{F}_{2F} \quad F_{2B}\right] \left\{\begin{matrix} \dot{\eta} \\ \dot{\beta} \end{matrix}\right\} + F_3\lambda \end{split}$$

Highly Flexible Wing

Beam properties:

Length (m)	16	16
Chord (m)	1	14
Mass per length (kg/m)	0.75	12
x-sectional c.g. position	50% chord	10
x-sectional shear center	50% chord	
Rotational inertia (kg·m)	0.1	· ·
Flat bending rigidity (N·m²)	2.00×10^4	•
Edge bending rigidity (N·m ²)	4.00×10^4	869 2
Torsional rigidity (N·m²)	1.00×10^4	° 62 9,34 0

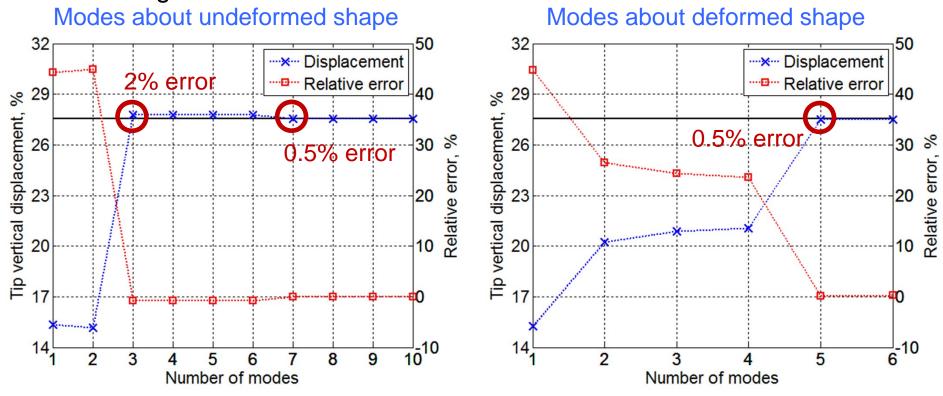
Nonlinear flutter speed: 23 m/s

	Ref. 3*	Current (linear)	Current (nonlinear)
Velocity (m/s)	32.2	32.2	23.3
Frequency (Hz)	3.60	3.60	1.61

[3] Patil, M.J., Hodges, D.H. and Cesnik, C.E.S., "Nonlinear Aeroelasticity and Flight Dynamics of High-Altitude Long-Endurance Aircraft," *Journal of Aircraft*, Vol. 38, No. 1, 2001, pp. 88-94.

Modal-Based Static Solution

Convergence of static solutions with different number of modes

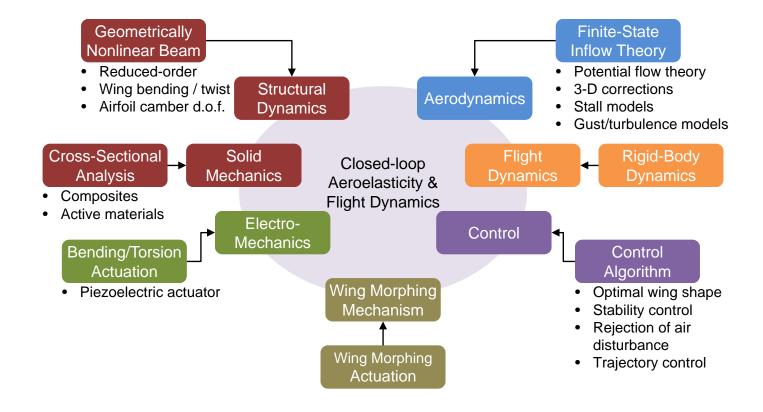


For more discussion:

[4] Su, W., and Cesnik, C.E.S., "Strain-Based Analysis for Geometrically Nonlinear Beams: a Modal Approach," *Journal of Aircraft*, Vol. 51, No. 3, 2014, pp. 890–903. (doi: 10.2514/1.C032477)

Fewer modes required if modes are obtained about deformed shape

Multi-disciplinary Simulation of Flight Vehicles



An active aero-servo-elastic simulation system

